
How to Crack: MAC [by The Vassal]

Hopefully this will be an informative work. One in which I will attempt to
instruct you all how to successfully remove some of the more basic Mac
protection
schemes easily, the right way. Before we start anything, however, there are a
few
things that you will need. They are:

* Mac Plus or better w/1 meg of RAM suggested
* MacsBug (Debugger from APDA)
* Programmer’s Key (Can invoke MacsBug from Keyboard)
* DisAsm 3.1 (Shareware disassembler)
* FEdit 3.21 (Shareware Sector editor)
...and
* A working knowledge of 68000 Assembler

Ok, whether or not you believe in Shareware, it is a good system and the
programs
mentioned above are all capable of being commercial packages, so please pay
the
tiny shareware fee so the authors will continue to make them better. Thanks.

Chapter 1- It's a Scheme Game

The first thing you should do before you crack any ware is to identify
completely
what scheme they are using to protect their ware. On the Mac, schemes are
usually
basic and easy to get around. Some of the more common ones include:

* Password Protection
* Serial Number Protection,
* Key Disk Protection
* Date Expiration Protection (for Betas usually)
* HardWare Key Protection

We’ll look at these schemes one at a time and I will provide examples for each
later. Right now, I want to explain how to determine what protection is what.
First off, before you do anything make a backup of the application you are
going
to tamper with. This way if you screw up you will have something to go back to
later.

Ok, now when you launch the application a couple of different protection
schemes
will surface immediatly. If a dialog comes up immediatly and asks you to type
something in, it is almost always a Password Protection Scheme or a Serial
Number
Scheme. Key Disk Protection Schemes will ask you to insert a floppy so it can
read important data from it and then continue with the program as normal. The
Date Expiration Protection Scheme is never really noticed until it expires,
then
everytime you run the program it will tell you it has expired and will then

quit.

Probably the most overated protection scheme going is that of hardware 'key'
or
'dangle' protection. Usually the software package would ship with a hardware
device that you would connect to the ADB port, Serial Port, or SCSI port. The
different methods of checking the hardware will be described in detail later
on
in this document. No need to swamp you with technical stuff just yet.

Chapter 2- The Tools of Cracking

As I mentioned earlier you will need certain programs to help you along in the
deprotection process.

MacsBug: Is a full-featured debugger that allows you to set traps in
 programs and then trace through instruction by
 instruction. This is an immeasurably useful program. It
 has loads of commands, but I only use these commands
 for cracking:

atb [trap] ; lets you set a trap that which will break you into
MacsBug if
 the program tries to exectute it. Mac Traps are from
A000-
 AFFF and do many different things like _Eject &
_ExitToShell
 and stuff like that.
atc ; this will clear all of the traps t hat you set with
atb
es ; quit current application and exit to shell
ea ; quit current application then launch it again
 G ; go. Continue the application as normal. Turn off
MacsBug.
GT [addr] ; lets you GO from a selected address.
il [addr] n ; lists from selected address "n"= number of lines
? ; This displays the online help file, very useful

These are the commands I use most of the time. There are other commands which
are
more complicated and do some special things but there is no need to explain
them
here. I will do that in a future issue.

FEdit 3.21: This is a very good sector/file editor with good search functions
for
finding certain code and changing it. This is very much like any other editor
so
there is no need to explain its functions.

DisAsm 3.1: This is a disassembler, the only one I have seen on the Mac so far
and it works pretty good. All functions are operated from the Menus, but the
main
ones I use are the Search functions. Like finding certain traps, are certain
addresses. I don’t really use this much but if needed it is good to have a

disassembler around. Sometimes MacsBug won’t quite work if a program steals
memory away from it and DisAsm must be used as a last resort.

Programmer's Key: This is a nifty little INIT that lets you invoke MacsBug
from
the keyboard. Basically you hit the Command-Reset keys and it dumps you into
MacsBug, you can also hit Control-Command-Reset to restart your computer.
Which
is kind of neat. I recommend using this instead of the hardware interupt
switch
on the machine itself, mostly because its a pain to keep reaching in back of
your
machine to do it.

Chapter 3- Assembly is the key to the crack

It is extremely important to have a background in Assembly language if you
want
to get far cracking. To tell you the truth I used to be into programming the
Apple II and IIgs in Assembly language. When I moved over to the Mac, I found
out
everything was C and Pascal, which disturbed me. C and Pascal allow you to
program without having a clue what is really going on. I don’t like the idea
of
it at all. Most people think cracking is something for people who know how to
program, but the truth is, I haven’t written a damn thing for the Mac as far
as
applications go, because I don’t know how. I could probably write something in
assembly, but I just don’t have a nice assembler like Merlin on the Mac.

Some day, I recommend you buy a good 68000 reference manual so you can learn
the
processor. That’s what I did but Apple II assembly knowledge helped me out
alot.
Assembly languange on the Mac is a bit more complicated than that of the Apple
II; on the Mac memory is moved not loaded or stored.

On the Apple II and IIgs there are three registers you would normally use to
store data in. The A or Accumulator, the X Register, and the Y Register. The
Mac
has 16 registers that can be used in this manner. They are D0-D7 which are 8
data
registers for storing data, they are all capable of holding 32-bits worth of
data. You can access or change these the low 8-bits, the low 16-bits or all
32-bits, changing the low byte or word has no affect on the remaining
unchanged
portion. There are also 8 address registers from A0-A7 but A7 is usually used
as
a stack pointer for the 68020 and is also known as the SP in this situation.
The
address registers are basically the same as the data registers but they can
only
be accessed using all 32-bits. Changing the low word of an address register
replicates the bit 15 in bits 16-31. This is called sign extension, which
converts a two's complement 16-bit quantity into an equivalent 32-bit
quantity.

Another register on the Mac worth noting is the program counter (PC) register.
This holds the address of the next instruction to be executed, and is very
useful
in tracing code.

There are many more opcodes in the 68000 instruction set then there are in the
6502 or 65c816, too many to list here. In the crack examples I will explain
everything very thoroughly so you can get an idea of what is going on, and
understand it.

MacsBug and DisAsm both list Assembler in the same manner. They list the
address
on the left hand side, the opcode and effected address or values in the middle
and the hex values on the right hand side. This is how I will lit my code, but
I
will add in descriptions on what it is the code is actually doing. Here is an
example of what I mean:

611F04: Move.L D0,D1 ;2200 : this moves the contents of
 D0 into D1

That's just an example, but it is very common to see code like that. The thing
that is cool about MacsBug is that it lists all of the Address and data
registers
on the left part of the screen from top to bottom along with other system
registers.

Another important aspect of 68000 and higher processors is that they use
branches
the same way the Apple II did, only that there are many more different branch
instructions and they are much more powerful. Here are a examples of branch
opcodes for the 68000 series processors (used in Macs):

Hex Instr. Ex. Meaning
 [$60] $60xx BRA (BRanch Always). This instruction
always
 branches to an address $xx
bytes in front of
 where the instruction was
passed.

 [$66] $66xx BNE (Branch if Not Equal). This
instruction will
 branch ahead $xx bytes in
front of where the
 instruction was just
passed.

There are 16 in all but I would rather not make this publication into an
Assembler Reference book. I will put out one of those in the future maybe. I
do
suggest getting a 68000 quick reference though. On we go.

Chapter 4 - Key Code Protection

 Example: Quick Format 7.0

The first type of protection scheme I would like to explain is the Key Code
Scheme. This is used in Quick Format 7.0, which is a Public Domain Shareware
program that is very good at formatting floppies and designing your own
labeling
scheme those floppies. It is definately worth the Shareware fee, so I suggest
if
you like the program to buy it, you can probably find it on many online
services
and from user groups.

The author decided to put in a registration algorithm which requires its users
to
type in a key code to access the advanced features of the program. When you
first
launch the Quick Format 7.0 application, a dialog box comes up and asks you to
enter in the key code. If no key code is entered or you hit the return key,
the
program would continue to run, but with the advanced options turned off.

The author is doing a couple of different little things. First, he is going to
check somewhere within his resource files to see if the current application
being
used is registered. Usually there is a register byte in a resource somewhere
in
the app. He will then do a compare to see if it really is registered. If it
is,
it continues like normal, if it isn’t registered, it will jump to another
routine
which turns off the advanced options and then runs the app as normal.

There are a few options we have when deprotecting this app. We can use MacsBug
to
trace through for the routine, then disassemble it to see where it does the
compare; or we can use ResEdit to find a resource that looks suspicious and
delete it. The latter might be a little tedious and it is always much more
interesting tracing through code.

Now we will deprotect Quick Format 7.0. For best results and for speed and
memory
purposes quit all other applications you are currently running. When you are
back
at the Finder, hit “Command-Reset” or reach in back of your machine and press
the
hardware interrupt switch, this will activate MacsBug. Your screen should have
cleared and you should be looking at a white screen with numbers on the left
hand
quadrant of the screen running from TOP to BOTTOM. Those numbers are the
various
addresses and registers in memory.

Running along the bottom of the screen from LEFT to RIGHT are two separate
boxes.
The box on the big box with the numbers in it is a disassembly of the location

in
memory you just broke into with MacsBug. The smaller box under it is the
MacsBug
command line. On the far left you should notice a blinking cursor. From the
command line you can execute different commands to help you trace through
programs, especially useful in deprotecting software. At the command line type
“?” (help). This will print up a list of different topics. If you keep hitting
return it will give you information about each topic in the order they are
shown
on the screen. So play around and hit return a few times to get an idea of
what
commands you can use.

Now that you are done playing let’s get started. I almost always set a TRAP
for
an _InitGraf. You can do this by typing
 'ATB INITGRAF'

A message should appear above the disassembly box saying 'A-Trap Break at A86E
(_InitGraf)' everytime. What this means is that the program will be stopped
and
MacsBug will take over everytime the program tries to execute an _InitGraf.
This
works the same way for all of the other trpas that the Mac toolbox has as
well.

Ok, now type 'G' on the MacsBug command line. This should bring you right back
to
the Finder where you started, and you will regain control of your Mac. Locate
Quick Format 7.0 and launch it. Almost immediately your screen should change
back
into the MacsBug screen. There should be a message saying 'A-Trap break at
XXXXXXX : A86E (_InitGraf)'. This means when you launched the program, MacsBug
halted it because the program tried to pass an _InitGraf trap. Now that the
program is halted, you can TRACE through the program to find the copy
protection.
You may not successfully pinpoint the protection to any one specific area
until
you have traced through a number of times.

Use the 'T' command to trace through. The object is to continue hitting 'T'
and
return until the protection scheme comes up. Eventually it will. When you do
get
it up look at the last few lines of code that was passed and you should see
something like this:

Addr Instruction Hex Bytes
583834 JSR SETUPMEN 4EBA FE14
583838 JSR INITIALI 4EAD 02E2
58383C JSR INITGLOB 4EBA FEBE
583840 JSR VIRALCHE 4EBA FF22
583844 JSR CHECKMOR 4EBA F82A

Now, it’s pretty obvious from just looking at the labels they used that you

can
determine what is going on. In most cases people would not use LABELS like the
ones above, but since it is shareware and not a $500 commercial package I can
see
why the author opted the easier route for programming ease. The first JSR
would
probably be him initializing his menus and stuff. The second JSR would be to
initialize the screen and the fonts or whatever, the third JSR would be
initializing the global variables he would need and the fourth would be to
check
for any virus, persay. The fifth however is the routine he uses to check if
the
program has been registered and brings up the dialog asking you to enter a key
code. If it hasn’t been registered with the correct keycode the program turns
off
some options. But, that is not necessary, as by omitting this JSR CHECKMOR you
will remove the check and the program will run with all options available.

Write down the last 10 or so bytes on a piece of paper noting that 4EBA F82A
is
what you will have to change. Since you want to omit these bytes you are best
off
using two NOP (or No OPeration) commands. The hex value for a NOP is 4E71. Now
run FEdit and open up the Quick Format 7.0 program and do a HEX SEARCH for the
bytes you wrote down on the paper. Then change the proper values and you will
be
all set. Here is what you should be looking for and the change you should be
making:

Byte Changes (You should find the SEARCH string only ONE TIME!)

Search : 4EBA FE14 4EAD 02E2 4EBA FEBE 4EBA FF22 4EBA F82A
Change : 4E71 4E71

The protection showed above is obviously an easy scheme to get around, and to
tell you the truth, there really aren’t that many hard schemes on the Mac,
like
there are or were on the Apple II. It is important to check the routine you
are
disabling. Sometimes variables (or globals) are passed in between different
parts
of protection schemes, if you skip the entire protection scheme there is a
pretty
good chance you will miss a variable (or global) getting passed and your
program
will crash on you in the future.

The best way to check is to use the program after you have initially
deprotected
it, if it works ok, then chances are no globals were passed. In the example
above, all of the globals were passed in the prior two JSRs, which made things
very easy.

Chapter 5 - Serial Number Schemes

Serial Number Protection Schemes are the same as Password Protection Schemes
in
most cases. Both are checked with memory using a compare instruction, but they
do
have differences. For example, certain serial number schemes are actually
mathematical answers where the application will perform some complex
arithmetic
equation using such information as your name or company name, if the equations
solution matches the serial number you type in the program will continue on
like
normal.

Some serial number schemes are easy and do not use any arithmetic all, some
check
to see if you enter a prime number, etc. There are many ways. Probably the
most
common is; the company making the software will add a resource to the
application
housing the serial number. When the package first loads, it will ask you for
your
serial number then will do a compare with the value entered and the value
stored
in the serial number resource.

Chapter 6- Key Disk Protection Schemes

There are a couple of different ways commercial software authors implement Key
Disk Protection. Key disk protection essentially is software that requires the
original floppy diskettes to run correctly. These types of programs come with
an
installer for copying them onto a hard drive. Some packages offer three
installs
to a hard drive; if you need more copies, you have to use the original disk
each
time you run that program.

Essentially what is happening here is this. On the floppy disk there are files
with their INVISIBLE bit set meaning they will not bee seen or accounted for
in
the volume info. Therefore, if you try to copy the program onto a hard drive
the
invisible files will not be copied and the copy will not work properly. If you
just turn the INVISIBILITY bit off using ResEdit and then copy the files, the
program will work. But, this is only for programs that do not always need the
key
disk. Other programs require the key disk every time you run the application.
In
those cases, the key disk has a purposely bad block. When you run the
application, it will read from the floppy and test the block’s status. If it
is
bad it will continue on knowing it is the original disk, it the block is ok it
means that the program has been copied onto another disk which is not the
original or key disk. The best way to operate around this scheme is to trace
through the program to where it actually reads from the floppy, then change
the
BRANCH condition after the COMPARE. This will fool the program into always

thinking that the block that is read is bad.

Chapter 7- Date Expiration Schemes

These schemes occur out of the blue without notice most of the time. Most apps
that use this scheme are beta apps that are expected to be updated before too
long or demos of games and such. There are only two ways to read the current
date
or time on a Macintosh, one is to use the _GetDateTime trap the other is to
use
the Macintosh Global variable memory address $020C at which the current number
of
seconds that has elapsed since Midnight, January 1st is stored. Basically both
routines are extremely similar and would probably look something like this:

_GetDateTime (Protection Method)

 _GetDateTime (Get current # of secs since 12am
01/01/04)
 CMPI.L expiredate,D1 (Compare the date with expiration date)
 BLE notexpired (If less than, then it hasn't expired)
 JSR EXPIRED! (Otherwise show the dialog and bomb
out!)

 Address $020C (Protection Method)

 CMPI.L expiredate,$020C (Compare the current date with expire date)
 BGT EXPIRED (If current date is > then expire
date,
show dialog
 & BOMB!)
 --------- (otherwise it hasn't expired and
everything is
 ok!)

That should have given you some idea what the protection schemes look like,
they
vary of course but that is what they will normally be like. The simple way to
disarm these routines is to change the Branch Condition, for instance in the
first protection scheme shown above it would be extremely easy to change the
BLE
to a BRA which will automatically branch to the “notexpired” portion of the
program.

For the second routine has an easy way to eliminate the protection scheme. It
would be to change the 'BGT EXPIRED' into two NOPs. Which will totally
eliminate
the check and fool the program into thinking everything is ok.

Chapter 8- Hardware Key Protection

Not many people know too much about this protection scheme. But one obvious

observation is that companies are making there own devices and confused
companies
with low marketshare are buying into there hardware protection scheme, which
really is not that good to tell you the truth.

Basically what the Eve™ hardware key does is it hooks up to your ADB port and
has a chip in it which can be read from. All of the packages I have seen that
use
the Eve™ protection key come with an Eve INIT. Basically this INIT reads one
or
more values from the Eve key and stores it somewhere in memory. The program
that
will then do a Compare to the memory to see if the values match if they do
then
the program will continue, however if there is a null value found the program
will warn you that the Eve Key is not present and then quit. If the value is
incorrect it will tell you that you either have the Eve hooked up incorrectly
or
that you are using an Eve from a different software package.

The easiest way around the Eve Hardware key would be to change the Branch
conditions of the checks it does 1) to locate Eve and 2) to compare the
values.
Once you have changed these branch conditions the program will work as it
would
have if the Eve protection had not been implemented.

From what I have heard some software locations or other important data to the
program is stored in the Eve™ that may be needed upon run time. For example,
if
a program is encrypted and the decryption routine is stored on the Eve™ key it
would be almost impossible to deprotect the program without a valid Eve™ key
to
work with.

So, I would just use MacsBug the way we have been and just trace through for
the
checks. Eve™ will let you know when something is wrong through the use of
dialogs, so tracing is pretty easy. Find those branches and change the
conditions.

Chapter 9- The Ultimate Protection Scheme

This is a hotly debated topic. Most people would say that no protection scheme
can go uncracked, but I beg to differ. I am sure I can stir something up that
will boggle a few minds for at least 6 months of everyday tracing. Which will
probably force that cracker to stop working on it.

In this day and age all software should be unprotected and should be available
through the Shareware system. Corporate America is crippling our economy and
the
only ones benefitting from it are the few 'elite' businessmen or
businesswomen.

The Shareware system ensures that the people/programmers who put their time
and
effort into their projects recieve all of the money they bring in. Thats what
Corporate America should be like. Spread the wealth amongst everyone. And work
for the money you make, don’t cheat anyone out of it.

'This article is written in memory of the old apple pirates who have paved the
way for a new breed of "elite pirate" life form. Hadn't it been for their
patience and instruction our generation of pirates would have died off long
ago.
Now I pass onto you my knowledge and ideas in hope that you will all use it,
share it, work together with it and be "elite" toward one another. '

The Vassal

Many thanks to: Hipcheck, Agent Orange, The Terrorist and HackMan

Also thanks to: Far Side, Jim Heebner, Zelig, ShadowMan, The Embalmer, Mr_T,
 The Wahoo, Grimm, Enigmatic Simplicity, Gandalf
Greyhame,
 and (High Voltage for reminding me what the Apple II
days were
 really like)...

